
Announcements Effects Maybe State Functors FIN

Software System Design and Implementation

Lecture 5: Effects, State Management

Zoltan A. Kocsis
University of New South Wales

Term 2 2022

1

Announcements Effects Maybe State Functors FIN

Announcements

Assignment 1: due July 3.

Warning

That is a Sunday. But support from James and I may not be
available (or be sparse) over the weekend. Plan accordingly!

2

Announcements Effects Maybe State Functors FIN

Midway

It’s Week 5. We’re halfway through!

What have we accomplished?

Mastered the rudiments of Haskell programming.

Learned basic reasoning methods.

Encountered useful algebraic structures.

Dealt with: data transformations, algorithm implementation
in mathematically structured programs.

3

Announcements Effects Maybe State Functors FIN

Midway

It’s Week 5. We’re halfway through!

Where are we headed?

Toward larger-scale mathematically structured system design.

Previous focus: data structures.

New focus: control structures.

To reach the level of an adept Haskell programmer, you have
to master:

- Control.Monad (monads)

- Control.Lens (lenses, folds, traversals)

The remainder of this course will mostly be about
Control.Monad.

4

Announcements Effects Maybe State Functors FIN

Effects

Effects

Effects are observable phenomena from the execution of a program.

Example (Memory effects)

int *p = ...

... // read and write

*p = *p + 1;

Example (IO)

// console IO

c = getchar();

printf("%d",32);

Example (Control flow)

// exception effect

throw new Exception();

Example (Non-termination)

// infinite loop

while (1) {};

5

Announcements Effects Maybe State Functors FIN

Internal vs. External Effects

External Observability

An external effect is an effect that is observable outside the
function. Internal effects are not observable from outside.

Example (External effects)

Console, file and network I/O; termination and non-termination;
non-local control flow (exceptions); etc.

Are memory effects external or internal?
Answer: Depends on the scope of the memory being accessed.
Global variable accesses are external.

6

Announcements Effects Maybe State Functors FIN

Purity

A function with no external effects is called a pure function.

Pure functions

A pure function is the mathematical notion of a function. That is,
a function of type a -> b is fully specified by a mapping from all
elements of the domain type a to the codomain type b.

Consequences:

Two invocations with the same arguments result in the same
value.

No observable trace is left beyond the result of the function.

No implicit notion of time or order of execution.

7

Announcements Effects Maybe State Functors FIN

The Danger of Side Effects

They introduce (often subtle) requirements on the evaluation
order.

They are not visible from the type signature of the function.

They introduce non-local dependencies which is bad for
software design, increasing coupling.

They interfere badly with strong typing, for example mutable
arrays in Java, or reference types in ML.

We can’t, in general, reason equationally about effectful programs!

8

Announcements Effects Maybe State Functors FIN

Problem: Equational Reasoning

Equational reasoning fails in the presence of impure functions!

Imagine we allowed functions with side effects in Haskell, for
example, getInt :: Int, which prompts the user for an
integer input, then returns whatever the user keyed in.

Since x − x = 0 is true for all integers, equational reasoning
says that if x :: Int, then we can replace x - x with 0

without changing the meaning of our program.

But getInt :: Int, so we get getInt - getInt == 0,
which is nonsense (imagine what happens if I input two
different integers).

9

Announcements Effects Maybe State Functors FIN

Monads as the Solution
Haskell faced a problem. You can’t have both of these:

1 Equational reasoning.

2 Functions with side effects.

Monads

Monads are mathematical structures that were introduced by
French mathematician Roger Godement in 1950. They come
from category theory, a fairly abstract field of mathematics.
In Oct 1992, Simon Peyton Jones and Philip Wadler presented
a new model, based on monads, for performing input and output in
pure functional languages such as Haskell. The Haskell community
went on to apply monads to many system design problems in
functional programming.

The next 3 lectures: building up to understand SPJ and PW’s
solution to the I/O problem.

10

Announcements Effects Maybe State Functors FIN

Scenario I

We will not introduce monads in this lecture. However, we will
perform some system design tasks that hint at their existence.

Getting stuff from a DB

Imagine we have a database full of employee records:

data Employee = Employee

{ idNumber :: ID

, name :: String

, supervisor :: Maybe ID

} deriving (Show, Eq)

Each employee has a unique id number, a name, and possibly a
supervisor.

11

Announcements Effects Maybe State Functors FIN

Scenario I

We have a search field, where the user can type an ID. When the
user presses the Search button, the system should output the
record of the supervisor of the employee with the given ID (if any).

Output: The supervisor of employee #23 is ... Demo:
live coding Maybe

12

Announcements Effects Maybe State Functors FIN

State Passing

Example (Labeling Nodes)

data Tree a = Node a (Tree a) (Tree a) | Leaf

Given a tree, label each node with an ascending number, by
labeling the left subtree first.

label :: Tree a -> Tree Integer

()

() ()

() () () ()

1

2 5

3 4 6 7

Demo: Labeling Nodes

13

Announcements Effects Maybe State Functors FIN

Bind for State

Typically, a computation involving some state of type s and
returning a result of type a can be expressed as a function:

s -> (s, a)

Rather than change the state, we return a new copy of the state.

14

Announcements Effects Maybe State Functors FIN

State Implementation

The Haskell standard library has a State type that is essentially
implemented as the same state-passing we did before! But note
that we had a type synonym, whereas they have a bona fide data
type.

data State s a = State (s -> (s,a))

Caution

In the Haskell standard library mtl, the State type is actually
implemented slightly differently, but the implementation essentially
works the same way.

15

Announcements Effects Maybe State Functors FIN

State

State Operations

get :: State s s

put :: s -> State s ()

return :: a -> State s a -- our yield

evalState :: State s a -> s -> a

Bind

-- our bindS is declared infix

(>>=) :: State s a -> (a -> State s b) -> State s b

-- usage (implements the `use` fn):

get >>= \x ->

put (x+1) >>= _ ->

return x

16

Announcements Effects Maybe State Functors FIN

Higher Kinds

17

Announcements Effects Maybe State Functors FIN

Types and Values

Haskell is actually comprised of two languages.

The value-level language, consisting of expressions such as if,
let, 3 etc.

The type-level language, consisting of types Int, Bool,
synonyms like String, and type constructors like Maybe,
(->), [] etc.

This type level language itself has a type system!

18

Announcements Effects Maybe State Functors FIN

Kinds

Just as terms in the value level language are given types, terms in
the type level language are given kinds.
The most basic kind is written as *.

Types such as Int and Bool have kind *. These are called
nullary types.

Seeing as Maybe is parameterised by one argument, Maybe has
kind * -> *: given a type (e.g. Int), it will return a type
(Maybe Int). This makes Maybe a unary type.

There are binary types etc. But there are also higher-kinded
types such as (* -> *) -> *. We won’t deal with these for
now.

19

Announcements Effects Maybe State Functors FIN

Lists

Suppose we have a function:

toString :: Int -> String

And we also have a function to give us some numbers:

getNumbers :: Seed -> [Int]

How can I compose toString with getNumbers to get a function
f of type Seed -> [String]?

Answer: we use map:

f = map toString . getNumbers

20

Announcements Effects Maybe State Functors FIN

Maybe

Suppose we have a function:

toString :: Int -> String

And we also have a function that may give us a number:

tryNumber :: Seed -> Maybe Int

How can I compose toString with tryNumber to get a function f

of type Seed -> Maybe String?

We want something like a map function but for the Maybe type:

f = maybeMap toString . tryNumber

Demo: maybeMap implementation

21

Announcements Effects Maybe State Functors FIN

Functor

All of these functions are in the interface of a single type class,
called Functor.

class Functor f where

fmap :: (a -> b) -> f a -> f b

Unlike previous type classes we’ve seen like Ord and Semigroup,
Functor is over types of kind * -> *.

Instances for:

Lists

Maybe

Functions (how?)

Demo: fmap for Functions

22

Announcements Effects Maybe State Functors FIN

Functor Laws

The functor type class must obey two laws:

Functor Laws

1 fmap id x == x

2 fmap f (fmap g x) == fmap (f . g) x

In Haskell’s type system it’s impossible to make a total fmap
function that satisfies the first law but violates the second. But
this is a surprisingly deep theorem, proved using something called
parametricity.

23

Announcements Effects Maybe State Functors FIN

FIN

1 Assignment 1: due on Sunday, 03 July 2022.

2 Last week’s quiz is due 23:59 Thursday, 30 June 2022.

3 Last week’s exercise is due 09:10 Thursday, 30 June 2022.

4 This week’s stuff is due after flex week.

24

	Announcements
	

	Effects
	

	Maybe
	

	State
	

	Functors
	

	FIN
	

